Creating Active Device Materials for Nanoelectronics Using Block Copolymer Lithography
نویسندگان
چکیده
منابع مشابه
Creating Active Device Materials for Nanoelectronics Using Block Copolymer Lithography
The prolonged and aggressive nature of scaling to augment the performance of silicon integrated circuits (ICs) and the technical challenges and costs associated with this has led to the study of alternative materials that can use processing schemes analogous to semiconductor manufacturing. We examine the status of recent efforts to develop active device elements using nontraditional lithography...
متن کاملScanning probe block copolymer lithography.
Integration of individual nanoparticles into desired spatial arrangements over large areas is a prerequisite for exploiting their unique electrical, optical, and chemical properties. However, positioning single sub-10-nm nanoparticles in a specific location individually on a substrate remains challenging. Herein we have developed a unique approach, termed scanning probe block copolymer lithogra...
متن کاملCreating surfactant nanoparticles for block copolymer composites through surface chemistry.
A simple strategy to tailor the surface of nanoparticles for their specific adsorption to and localization at block copolymer interfaces was explored. Gold nanoparticles coated by a mixture of low molecular weight thiol end-functional polystyrene (PS-SH) (Mn = 1.5 and 3.4 kg/mol) and poly(2-vinylpyridine) homopolymers (P2VP-SH) (Mn = 1.5 and 3.0 kg/mol) were incorporated into a lamellar poly(st...
متن کاملNanoporous Materials from Block Copolymer Precursors
Block copolymers constitute a fascinating set of self-assembled materials exhibiting compositional heterogeneities on the nanometer length scale. While traditionally employed as thermoplastic elastomers, asphalt modifiers, and adhesives, the potential of self-assembled block copolymers for nanotechnological applications has been realized in the past decade and many examples have now appeared in...
متن کاملEvolution of block copolymer lithography to highly ordered square arrays.
The manufacture of smaller, faster, more efficient microelectronic components is a major scientific and technological challenge, driven in part by a constant need for smaller lithographically defined features and patterns. Traditional self-assembling approaches based on block copolymer lithography spontaneously yield nanometer-sized hexagonal structures, but these features are not consistent wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nanomaterials
سال: 2017
ISSN: 2079-4991
DOI: 10.3390/nano7100304